About Amy Vega

Amy Vega, MS, CCC-SLP Interactive Metronome, Inc Clinical Education Director Clinical Advisory Board Director Clinical Education Administrator

A bit of research: Fast thinking

Cognitive psychologists theorize that the faster we are able to process information (or think), the more intelligent we are, and the more readily we can learn and demonstrate what we’ve learned. There are many recent studies that support this view, including this one published in the journal Intelligence. Each individual is born with a certain amount of resources for attending to and processing information. How well a person allocates those resources appears to be a major factor in determining intelligence. Taub et al (2007) demonstrated that Interactive Metronome (IM) training has a significant positive effect on reading achievement (affecting 4 of 5 critical pre-reading skills) in elementary school students. They proposed that IM training was primarily improving “processing [thinking] speed,” which in turn improved the students’ ability to allocate resources for attending and holding information in working memory … all essential for fluent reading.

Ben-Shakhar, G. and Sheffer, L. (2001). The relationship between the ability to divide attention and standard
 measures of general cognitive abilities. Intelligence, 29: 293-306.
Taub. G., McGrew, K.S., and Keith, T.Z. (2007). Improvement in interval timing tracking and effects on reading
 achievement. Psychology in the Schools, 44(8), 849-863.

Continue reading

A little more science than usual: Great research on intelligence

In the literature, psychologists describe two forms of intelligence that each contributes separately to our ability to perform tasks. These are “fluid intelligence” and “crystallized intelligence.” Whereas crystallized intelligence is the information and knowledge about things we have learned over the years, fluid intelligence is our ability to strategize and problem-solve. In the example of taking a test, we would recall knowledge about facts and information we learned from class and from studying our notes to answer the test questions (crystallized intelligence), but we may need to answer the questions in a strategic way like crossing out all multiple choice responses that clearly are not the answer and narrow the choices down to the two most possible, working from there to get the correct response (fluid intelligence). Stankov et al. (2006) studied the physiological neural oscillations (or rhythmic, repetitive neural signals between brain regions in the central nervous system) involved in human intelligence, or what we know is our ability to learn, access what we’ve learned, and problem-solve. They discuss the importance of synchronicity in brain activity to intelligence and propose that the degree of synchronization in brain activity may account for differences between individuals’ cognitive processing abilities. In a small pilot study completed in 2004, Dr Alpiner demonstrated under fMRI that individuals who’d received training for timing and rhythm using the Interactive Metronome demonstrated more synchronous activity in the brain when compared to individuals who did not receive this training. Other researchers (Taub et al., 2007) who studied the effect of IM training on reading achievement theorized that synchronized metronome tapping (via Interactive Metronome) increases the efficiency of the brain’s timing (or synchronicity of neural oscillations), thus improving the ability to process, store, and retrieve information.

Stankov, L., Danthiir, V., Williams, L.M., Pallier, G., Roberts, R.D., and Gordon, E. (2006). Intelligence and the tuning-in of brain networks. Learning and Individual Differences, 16, 217-233.

Continue reading

A person can only hold only “so much” information in working memory

A person can only hold only “so much” information in working memory … here is an anology: There are 5 babies in the bed. Put another one in, and one of the babies in the bed falls out. The bed can only hold “5” babies. Period. This study by Kane et al (2001) published in the Journal of Experimental Psychology further bolsters the theory that our ability to focus and pay attention is largely driven by how many bits of information (“babies”) we can hold in our working memory without losing them in the presence of more bits of information or distractions (“more babies”). Working memory is a skill that is dependent upon timing in the brain. The better the brain’s timing, the better working memory can hold onto the bits of information and use them for the situation (i.e., learning) or problem at hand. Taub et al (2007) have theorized that Interactive Metronome, a patented program that improves timing in the brain, primarily addresses thinking speed and working memory, thereby improving our ability to focus and learn.

Kane, M.J., Blecky, M.K., Conway, A.R.A., and Engle, R.W. (2001) A controlled attention view of working-memory capacity. Journal of Experimental Psychology, 130(2), 169-183.
Taub. G., McGrew, K.S., and Keith, T.Z. (2007). Improvement in interval timing tracking and effects on reading
 achievement. Psychology in the Schools, 44(8), 849-863.

Continue reading

A bit of research: Timing as an essential part of social communication

Timing in the brain is critical for communicating effectively or participating in group activities (i.e., sports, music, play). Some individuals wait until just the right moment to act, while others have a tendency to “jump the gun.” This may manifest in a penalty for a false start if playing football or social difficulty if a person constantly interrupts others when they are speaking. Miyake et al (2004) describe the neurological underpinnings of the tendency to make “anticipatory” timing errors like these in a paper published in Acta Neurobiologiae Experimentalis. Once we’ve learned a task or situation, we tend to respond as if on automatic pilot (without consciously thinking about it). But sometimes, something changes ever so slightly in the situation, and we must adapt and recalibrate our response. How well we do this depends upon our brain’s ability to perceive time…even in small increments like milliseconds. During the initial phases of Interactive Metronome (IM) training individuals with these timing-related problems often clap or move too fast (milliseconds ahead of the beat instead of on it), but soon become more in sync with the beat and with their peers.

Miyake, Y., Onishi, Y., and Pöppel, E. (2004). Two types of anticipation in synchronization tapping. Acta
 Neurobiologiae Experimentalis, 64, 415-426.

Continue reading

A bit of research: Central Auditory Processing Disorder (CAPD)

Individuals with language-learning disabilities show slowed or delayed timing in the brain (in particular in the brainstem), so that they are not processing the timed or temporal elements of speech quickly enough to decipher sounds accurately and comprehend what is being said (also called temporal processing). Auditory Processing Disorder is at the heart of language-learning disabilities and is the leading cause of problems with learning to read and write. But there is hope!! Research shows that auditory processing (or the brain’s ability to understand speech & language) can be improved (Kraus & Banai, 2007). Interactive Metronome training targets the underlying problem with timing in the brain. Once mental timing is improved, the brain can process information in the speech stream more timely and accurately, leading to development of phonological skills that are so vital for auditory comprehension, reading and writing.

Kraus, N. and Banai, K. (2007). Auditory-processing malleability. Current Directions in Psychological Science, 16(2), 105-110.
 

Continue reading

A bit of Research: The influence of timing in children with ADHD

A recent study by the Kennedy Krieger Institute (2011) showed that areas of the brain that control thinking and motor skills are different (smaller) in children with ADHD compared to other children. The specific regions of the brain that were mentioned are known to be involved in mental timing. Mental timing (AKA timing in the brain) is vital for many of our thinking skills and for good motor coordination. Studies have shown that timing in the brain is disrupted in children and adults with ADHD, leading to problems with focus, other cognitive abilities, and motor skills. Interactive Metronome, a patented non-medical treatment for ADHD, is the ONLY program that simultaneously works on thinking AND motor skills by specifically addressing and improving the areas of the brain responsible for mental timing.

Kennedy Krieger Institute (2011, June 10). Brain imaging study of preschoolers with ADHD detects brain differences linked to symptoms.
 

Continue reading

A bit of Research: Autism Spectrum Disorder

There is still controversy over whether Autism Spectrum Disorders result from some interaction with environment after birth (i.e., toxic exposures, immune-modulation post-vaccination, etc) or whether they result from genetic defect(s). Some would argue both are contributing factors, that certain individuals are born with a genetic predisposition and that exposure(s) in the environment turn on or off certain genes that may contribute to the development of Autism Spectrum Disorders. In this study, researchers provide a strong argument for a genetic defect in the “clock genes,” genes that control our perception of time and with genes for a process called “methylation” that controls the turning on and off of our genes or how they are expressed (ultimately how they control our abilities). Individuals on the Autism Spectrum demonstrate numerous symptoms resulting from an impaired perception of time from circadian rhythm (sleep/wake/appetite) to millisecond timing required for speech-language, social/behavioral, cognitive, motor, and visual skills. The Interactive Metronome (IM) is a training program that is administered under the guidance of a certified professional. It is designed to improve the basic timing skills necessary for development of speech, language, cognitive, and motor skills. Many parents and professionals also report decrease in aggressive behavior, improved social skills, and better sensory processing following IM training.
Wimpory, D. (2002). Social timing clock genes and autism: A new hypothesis. Journal of Intellectual Disability Research, 46(4), 352-358.

Continue reading

A Bit of Research: The important of timing in Speed Skating and the use of the Interactive Metronome

The important of timing in Speed Skating and the use of the Interactive Metronome

Researchers at Korea University College of Medicine (Park et al, 2012) recently conducted a neural imaging study of elite speed skaters to investigate whether training of complex motor skills resulted in structural changes to the cerebellum. The cerebellum responds to intense, repetitive training with increased brain mass in areas critical for skilled motor movement, in this case for control of balance, precisely coordinated movement, and visually guided movement. The authors compared the cerebellums of professional speed skaters to individuals who did not engage in regular exercise. They found that the specific skills required for speed skating that were trained repetitively resulted in structural changes to the brain that enhanced balance and coordination. They also found that the particular side of the cerebellum that was exercised repeatedly was affected (i.e., the right side due to maintaining balance on the right foot during turns). Of note, the cerebellum is also a central part of the brain’s internal timing network. The timing and synchronization of neural signals ultimately controls balance and coordination…

Continue reading

A Bit of Research on TBI

The front portion of the brain, or frontal lobes, are particularly vulnerable to damage during accidents. Individuals with traumatic brain injury frequently have what is called a “frontal lobe injury.” This is significant because this area of the brain is responsible for so many important skills for successful community reintegration: our personality and mood, our ability to plan and organize events, to manage and monitor time, to focus our attention and problem-solve, to sequence and coordinate motor movements, and the list goes on and on…

Continue reading

Have you ever heard that ADHD is genetic?

Have you ever heard that ADHD is genetic? Ever notice that children with ADHD seem out of sync? Here is a research study by Nanda et al (2007) that supports this view and does so by showing that not only is timing in the brain disrupted in children with ADHD, but that it IS ALSO slightly disrupted in their siblings who do not have ADHD (when compared to children from families with no diagnosis of ADHD). From this and other studies, evidence shows that the more the brain’s timing skills are off, the more symptoms like impulsivity, hyperactivity, inattention, lack of organization, poor time-management, or difficulty with reading and other academic work are evident. The Interactive Metronome is a relatively easy, non-medical treatment program for ADHD that improves the brain’s critical timing skills and is tailored to each child’s specific needs.

Nanda, N.J., Rommelse, M.S., Oosterlaan, J., Buitelaar, J., Faraone, S.V., and Sergeant, J.A. (2007). Time reproduction in children with ADHD and their nonaffected siblings. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 5.

Continue reading